
Zeitschrift für digitale Geisteswissenschaften

Beitrag aus:
Sonderband 4 der ZfdG: Die Modellierung des Zweifels – Schlüsselideen und -konzepte zur
graphbasierten Modellierung von Unsicherheiten. Hg. von Andreas Kuczera, Thorsten Wübbena und
Thomas Kollatz. 2019. DOI: 10.17175/sb004

Titel:
The Codex – an Atlas of Relations

Autor/in:
Iian Neill

Kontakt: Iian.Neill@adwmainz.de
Institution: Akademie der Wissenschaften und der Literatur, Mainz
GND: 1082253677

Autor/in:
Andreas Kuczera

Kontakt: andreas.kuczera@adwmainz.de
Institution: Akademie der Wissenschaften und der Literatur, Mainz
GND: 1167802993 ORCID: 0000-0003-1020-507X

DOI des Artikels:
10.17175/sb004_008

Nachweis im OPAC der Herzog August Bibliothek:
1037074203

Erstveröffentlichung:
08.05.2019

Lizenz:

Sofern nicht anders angegeben

Medienlizenzen:
Medienrechte liegen bei den Autoren

Letzte Überprüfung aller Verweise:
08.05.2019

GND-Verschlagwortung:
Graphdatenbank | Semantisches Datenmodell | Textanalyse | Wissensrepräsentation |

Zitierweise:
Iian Neill, Andreas Kuczera: The Codex – an Atlas of Relations. In: Die Modellierung des Zweifels –
Schlüsselideen und -konzepte zur graphbasierten Modellierung von Unsicherheiten. Hg. von Andreas
Kuczera, Thorsten Wübbena und Thomas Kollatz. 2019 (= Sonderband der Zeitschrift für digitale
Geisteswissenschaften, 4). PDF Format ohne Paginierung. Als text/html abrufbar unter DOI: 10.17175/
sb004_008.

http://dx.doi.org/10.17175/sb004
mailto:Iian.Neill@adwmainz.de
http://d-nb.info/gnd/1082253677
mailto:andreas.kuczera@adwmainz.de
http://d-nb.info/gnd/1167802993
https://orcid.org/0000-0003-1020-507X
http://dx.doi.org/10.17175/sb004_008
http://opac.lbs-braunschweig.gbv.de/DB=2/XMLPRS=N/PPN?PPN=1037074203
http://creativecommons.org/licenses/by-sa/4.0/
http://d-nb.info/gnd/1042198020
http://d-nb.info/gnd/4314515-2
http://d-nb.info/gnd/4194196-2
http://d-nb.info/gnd/4049534-6
http://dx.doi.org/10.17175/sb004_008
http://dx.doi.org/10.17175/sb004_008

The Codex – an Atlas of Relations | ZfdG 2019

Iian Neill, Andreas Kuczera

The Codex – an Atlas of Relations

Abstracts

This paper looks at how deep integration between text and data is attempted in The
Codex project. Standoff properties are used to mediate between the plain text stream and
entities modelled in the Neo4j graph database. A dynamic standoff property text editor was
constructed to enable real-time changes to text and annotations without invalidating standoff
property indexes. An examination of the multidimensional affordances offered by standoff
properties is explored, with reference to how annotations and graph entities can combine to
construct an ›atlas of history‹ using Codex.

In diesem Beitrag wird The Codex vorgestellt, ein Projekt, in dem basierend auf Standoff
Properties Texte multidimensional annotiert und die Annotationen in eine Graphdatenbank
eingebettet werden können. Darüberhinaus sind Basistext und Annotationen im Unterschied
zu vielen anderen Standoff-Markup-Systemen editierbar. Auch Annotationen selbst können
wieder annotiert werden, was den Forschungsdiskurs leichter nachvollziehbar machen könnte.

1. Introduction

The Codex is a project that aims to achieve deep integration between text and structured
data.1 Although data can be ›extracted‹ from texts and stored in a database – whether that
data be persons or places referenced, events recounted, numerical quantities reported, etc. –
the non-sequential nature of databases can make it difficult to put the data back into context.
While becoming amenable to computational analysis, the crucial narrative or argumentative
structure is usually lost. Text itself can be considered to be a kind of database, one that is
on the one hand constrained by its sequential presentation but on the other hand makes
capable the modelling of thought in its multidimensional complexity. XML is a powerful
tool for the modelling of text by allowing regions of text to be marked up with semantic
tags or elements, and languages such as XPATH can be used to query the XML document
model.2 However, the use of markup itself introduces a discontinuity between the text and
the data annotated. Markup changes the very text it marks up by creating a new marked-up
document. Also, overlapping annotations – such as are commonly required in manuscript
presentation annotations – cannot be directly expressed in XML’s tree-like hierarchical
structure, necessitating workarounds such as standoff markup which further degrade the
readability of the XML document. Without freely overlapping annotations the most essential
multidimensional aspects of text (its multitude of meanings) cannot be adequately marked up.

1 We would like to thank Elena Spadini and Joris van Zundert for their invaluable comments in preparing this
article.
2 XPATH is arguably not a substitute for database query languages such as SQL or Cypher, however. Although
XML bears some similarities to a database, in that its elements can be used to represent entities, a database
can represent entities from thousands of documents and allow complex querying of them, whether with set-
like operations such as SQL JOINs, filtering across tables, ordering and grouping, etc. Fundamentally, XML is a
document markup format while a database is a relational system (whether the entities related are tables as
in SQL databases or nodes and edges as in graph databases).

The Codex – an Atlas of Relations | ZfdG 2019

The Codex aims to bridge the divide between database and text – to achieve ›deep
integration‹ – by eschewing markup entirely. Standoff properties are used, instead, to represent
annotations. As defined by Desmond Allan Schmidt, the use of standoff properties is a
technique for recording textual properties that do not conform to a context-free grammar, and
can freely overlap.3 While standoff properties have been proposed in the digital humanities
several times,4 Codex offers a practical solution to adding annotations to text, allowing the user
to make changes to the text in real-time without breaking existing annotations. In addition, Codex
offers a selection of stylistic, presentation, and semantic annotation types, as well as tools like
named entity recognition (NER) and pronoun selection. The user can easily link annotations to
entities in the graph database, or create new entities and their dependencies, entirely within
modal windows, allowing the user to capture and construct data within the editor. They can
also add footnotes, marginalia, etc., within a modal window editor, offering the same features
as the editor in the window before. Annotations themselves can be annotated with editorial
commentary entered via the modal editor.5 In sum, through the use of a real-time standoff
properties editor, a powerful modal-window entity management system, and the Neo4j graph
database, Codex aims to provide an environment suitable for annotating all varieties of text,
and linking annotations back to the text on a character-level.

One of the main goals of Codex, building on the deep integration of text and data, is
to construct an ›atlas of history‹ from primary source texts. This phrase is a metaphor for
both the kinds of annotations used as well as the graphical tools employed to visualise

connections: ›atlas‹ here refers to a network of relations that are amenable to projection
in various ways.6 In other words, the purpose of Codex is not simply to annotate entities in
text, but to represent these entities as nodes and relationships in the Neo4j graph database.
The end result is both an annotated document and a graph dataset, which means that the
more entity annotations are added to texts the richer the network of relations between texts
becomes. As a basic example, if the corpus were the collected letters of Michelangelo7 and
references to Michelangelo’s father Lodovico Buonarroti were annotated, it would be trivial
to query the database to find all other texts referring to Lodovico.8 But to make clearer what
can be annotated and represented in the Codex system, we propose to give an overview of the
main annotation types.

3 Schmidt 2016a, pp. 63–69; Schmidt 2016b.
4 Schmidt 2016a, p. 64.
5 For example, if you wished to question the attribution of an agent annotation (such as a person) without
deleting or changing the annotation, you could add comments against the annotation itself.
6 Perhaps a more accurate metaphor for Codex would be an ›atlas of relations‹ as data doesn’t have to
contain spatial or temporal information to be visualised.
7 An ongoing Codex corpus, along with the diary entries of Luca Landucci, a 15th century Florentine citizen,
see del Badia 1883. Imported into Codex was the English translation by de Rosen Jervis 1927, see del Badia
1927. Additional Letters from Michelangelo where transcribed and annotated in Codex, see Carden 1913.
8 With the proper nouns also the pronouns are annotated, one can get an accurate idea of the referential
density in these letters.

#badia_diario_1883
#badia_diary_1927
#badia_diary_1927
#carden_michelangelo_1913

The Codex – an Atlas of Relations | ZfdG 2019

2. Annotations

The types of annotations in Codex currently fall into three main categories: stylistic;
presentation; and semantic.9 Stylistic annotations include commonly used typographical styles
like italics, bold, underline, strikethrough, subscript, superscript, and forms of emphasis like
spaced and uppercased text. The size, colour, and font type can also be set.

Fig. 1: Stylistic, layout, and semantic annotation buttons in the Codex editor. [Neill / Kuczera 2019]

However, the more interesting categories are presentation and semantic. These are broken
down as follows.

2.1 Presentation

2.1.1 Page, line, paragraph, sentence, column, etc.

These annotations denote regions of text corresponding to the presentation (or layout)
of a page in a manuscript or a publication. Because standoff properties can overlap freely,
presentation annotations in Codex pose no danger of truncating text with presentation
markup.

2.1.2 Hyphens as a zero point annotation

Hyphens present a challenge for annotating medieval manuscripts; while the editor
wishes to record the location of the hyphen, it is not desirable to intersperse the plain text
with hyphens as this will confound literal text searches. The hyphen annotation in Codex
avoids this problem by representing hyphenation with zero-dimensional annotations. A zero-
dimensional annotation is a special case of a standoff property that has a start index value but
no end index value; in this way, an annotation effectively refers to a position in the text between

characters. The hyphen itself is not stored in the text (leaving the words unhyphenated), but
the annotation indicates the location of the hyphen in the original. Zero point annotation is a
generalizable feature of standoff properties and can be used for other cases as well.

9 There is a fourth category in use in Codex that is out of the scope of this paper: machine-generated
syntaxical annotations. These are annotations generated by Natural Language Processing (NLP) libraries
such as Google’s Cloud Natural Language API which essentially add a syntaxical substrate to standoff
property documents. Their potential, when combined with other annotation layers, may be explored in a
future paper.

The Codex – an Atlas of Relations | ZfdG 2019

2.2 Semantic

Before proceeding we should note that for each semantic annotation there is a
corresponding semantic entity in the system. The types of annotations and entities available
in Codex is defined by the application code and not by an existing standard, meaning that
the system can be configured by a programmer with more annotations and entities as
desired.10 Each entity is modelled as a combination of nodes and edges in the graph database,
sometimes expressed in hypernode structures (in other words, an entity modelled over a
cluster of nodes).11 Creating a semantic annotation for a text is tantamount to either selecting
a pre-existing entity, or creating a new, corresponding entity in the modal window interface.
Conversely, entities can also be created and managed outside of the Codex editor in sections
of the Codex interface specific to that entity type. Therefore, entities can be considered as an
independent data-set from texts but capable of integration with texts via semantic annotations.
This means that entities can be exported or imported irrespective of texts in which they may or
may not be mentioned: entities don’t have to be mentioned in (or inferred from) texts to exist
in the system.

2.2.1 Agents

An agent refers to any kind of entity that is mentioned in the text.12 A non-exhaustive list of
agent types includes people, places, and objects (natural and man-made).13 Collective agents
like organisations, families and other groups can be represented,14 as well as aspects of an
agent at a point in time.15 Metadata about an agent can be recorded in associated property
nodes which are dynamically defined in the interface as needed. For example, one can record
the gender of a person, their height, weight, etc., and create new property types as required.16

Fig. 2: A record of Lorenzo de’ Medici’s gender as a property record. If desired, this can even be linked back to

a statement in the text via a property annotation. [Neill / Kuczera 2019]

10 Extending the standoff property editor requires some (arguably basic) knowledge of JavaScript, while
creating new types of entities requires grounding in the C# and Cypher programming languages and the
ASP.NET MVC framework.
11 According to Wikipedia, a hypernode is: A kind of graph whose node set can contain other graphs as well as
basic nodes. (Wiktionary: hypernode.)
12 Although an agent was initially defined in Codex as just a person or group that causes events (i.e., an
›historical agent‹), this definition proved too restrictive to capture the variety of entities actually referred to in
texts, and which serve agent-like functions in parts of speech.
13 An agent is stored as an (:Agent) node in the graph database. Additional information specific to the agent
type (for example, latitude and longitude for place agents) is recorded by storing the data in (:Property)
nodes, and relating them to the (:Agent) node they pertain to.
14 A collective is a group of agents, such as an organisation, a family, etc. Third-party pronoun parties are
often represented as agent collectives in Codex.
15 Agent aspects can be temporal or quantitative; for example, ›the Christ Child‹ agent is a temporal aspect of
›the Christ‹ agent, while an amount of ›3,000 moggia‹ is a quantitative aspect of (a portion of) ›7,000 moggia‹
in Landucci’s diary entry of April 6th, 1484 (del Badia 1883, p. 39).
16 Property data can also be time-specific for variable properties, such as height and weight to name two.

https://en.wiktionary.org/wiki/hypernode
#badia_diario_1883

The Codex – an Atlas of Relations | ZfdG 2019

Agents can also be related to each other via dynamically-created relations. (In Codex, these
are called meta-relations, for reasons which are discussed later in the section on this entity.)
The example below shows some of Lorenzo de’ Medici’s genealogical relationships, as well
as his connection to transient agent collectives like his presence in a group of six Florentine
ambassadors to Rome in 1471, and in another embassy to Rome in 1483.

Fig. 3: Screenshot from ›Codex‹ of a list of Lorenzo de’ Medici’s relationships in the system. [Neill / Kuczera
2019]

2.2.2 Claims

A claim refers to a statement concerning one or more agents, usually with respect to a
place and a time. A claim is essentially a statement that usually takes the form of an event
(an event claim), but can also represent a thought or an opinion. A claim entity in Codex is
not taken as a statement of fact, substantiated or otherwise, but is rather a data-structure
resembling a verb-phrase with prepositional agents. For example, the statement that »Lorenzo
de' Medici died on his estate at Careggi« made by Luca Landucci in his diary entry of April 8th,
1492, is modelled in Codex as a ›(Subject) Lorenzo de’ Medici, ›(Event) died‹, ›(At) Careggi‹,
visualised in the Codex interface and Neo4j database browser in Figure 4 and Figure 5.17 Our
approach is not to assert whether or not the statement reports a fact, merely to allow the
editor to annotate the statement.

Fig. 4: The event claim by Luca Landucci about Lorenzo de’ Medici’s death in the Codex interface. [Neill /

Kuczera 2019]

17 del Badia 1883, p. 53-54.

The Codex – an Atlas of Relations | ZfdG 2019

Fig. 5: A representation of the above event claim as nodes and edges in the Neo4j browser. The blue node

is a (:Claim); the red nodes are (:Agent)s; the green node is a (:Concept); and the yellow node is the (:Time).

[Neill / Kuczera 2019]

2.2.3 Texts

A text entity in Codex is composed of plain text and a collection of standoff-properties.18 For
convenience, texts can be assigned a ›type‹ indicating their function (such as ›body‹, ›footnote‹,
›margin note‹, etc.) but there are no limitations about the kind of text stored. Therefore, a text
can contain as much of or as little of the source text as appropriate. In the case of the Luca
Landucci Diary, each diary entry (of which there are several per page in the source) is stored
in a separate text node, whereas each Michelangelo letter as a whole is stored in a text node.19

Presentation annotations are used to mark sections of the text corresponding to the source
(e.g., pages, columns, etc.), and the structure annotation can be used to link texts to structure
entities which represent arbitrary sections of a publication (e.g., the chapters the text belongs
to).

A text annotation in Codex is an annotation that relates a region of text in a text entity
to a different text entity. There are two annotation topologies available to text annotations:
they can either be applied to a region of text, like most annotations; or they can be inserted
›invisibly‹ between characters.20 We can think of these topologies as one-dimensional and zero-

18 Entity means here the node or cluster of nodes and edges that model the entity in the graph. For example,
a text entity consists of a (:Text) node and a collection of (:StandoffProperty) nodes connected via the
[:text_has_standoff_property] edge. We use the term standoff property document (SPD) to refer to the
combination of plain text and standoff properties that makes up an annotated text in Codex.
19 There is currently a practical limitation to the length of an individual text node in Codex of about ten
kilobytes per node, due to a technical restriction related to how many HTML elements a browser can render
on the screen at one time without noticeable lag. Other web applications have implemented solutions to this
rendering issue, however, which can also be applied to Codex at a later date.
20 A zero-dimensional annotation is ›invisible‹ with respect to the plain text stream (output) but is displayed
within the Codex editor. The editor freely supports text characters that are either ›in-stream‹ or ›out-of-
stream‹. ›In-stream‹ characters appear within the plain text stream, ›out-of-stream‹ characters do not; but
both kinds can be annotated.

 Because a meta-relation contains more information than a unidirectional edge, meta-relation hypernodes
can be programmatically decomposed into unidirectional edges as a final projection, or as a Cypher
optimisation step.

The Codex – an Atlas of Relations | ZfdG 2019

dimensional annotations.21 It will be remembered that zero-dimensional annotations are also
used to represent hyphen annotations; in the case of text annotations they could function as
footnote numbers that the editor wishes to position in a text, but doesn’t want to be included
in the text per se.

2.2.4 Meta-Relations

A meta-relation entity is a relationship between agents with a number of features
distinguishing it from simple relationships or edges in a graph database:

1. It is dynamically definable in the Codex interface. We have found the ability to create
new relationship types in an ad hoc way to be invaluable for capturing the fluidity of
relationships in texts. When the selection of relationship types is hard-wired into a
program it becomes burdensome to create new ones; enabling the user to create them
freely in the interface encourages the spontaneous creation of relationship types that
are more fit-for-purpose;
2. It is bidirectional, meaning the user is able to specify both directions of the
relationship (e.g., ›parent of‹/›child of‹) rather than being forced to adopt a single
direction (e.g., ›parent of‹) imposed by graph edges. This encourages the user to think
in terms of the overall relationship – e.g., ›parentage‹ – rather than forcing them to
arbitrarily choose a single relationship to represent by implication a bidirectional
relationship.22 One advantage of this in constructing Cypher queries is that an agent’s
participation in a meta-relation can be found without needing to consider their role in the

relationship, although that role is recorded and can still be explicitly queried if desired;23

3. They are composable within a hierarchy, effectively allowing relationships themselves

to be treated as a graph. For example, one can define an overarching relation type
like ›interpersonal relationships‹ and nest subordinate types beneath it, like ›social
relationships‹, ›family relationships‹, ›professional relationships‹, etc., allowing one
to query relationships between agents (e.g., people) at an abstract level. Rather than
being limited to finding simply the ›friends of‹ a person, one can expand a query to also
retrieve ›associates of‹, ›acquaintances of‹, ›confidantes of‹, etc.

A meta-relation annotation, therefore, is an annotation that refers to a meta-relation
entity. Its practical purpose is to allow the editor to annotate agent relationships from texts,
extending the network of relationships between agents. Ultimately, such networks allow the
user to find indirect connections between texts on the basis of the relationships between agents

 Whether or not one models ›parentage‹ with a ›()-[:parent_of]->() ‹ edge or a ›()-[:child_of]->() ‹ edge is to
some extent an arbitrary choice; and with inherently unidirectional relationships such as ›married to‹ either
two relationships need to be created at all times -- (a)-[:married_to]->(b), (b)-[:married_to]->(a) -- or the read
query needs to accommodate either possibility, i.e., (a)-[married_to]-(b).

21 A one-dimensional annotation contains both start index and end index values equivalent to a line segment,
whereas a zero-dimensional annotation contains only a start index equivalent to a point.
22

23

The Codex – an Atlas of Relations | ZfdG 2019

established in the network. In Figure 6, the orange line beneath ›son of Antonio‹ is a meta-
relation annotation indicating the source of the statement that Luca Landucci was the son of
Antonio Landucci.

Fig. 6: An example of a meta-relation annotation (orange underline) in the Codex interface. [Neill / Kuczera

2019]

2.2.5 Concepts

A concept in Codex is a class or type that, taken as a whole, is part of a common ontology in
the system. Note that the ontology is not common in the sense of being a ›universal‹ or ›world‹
ontology, but merely functions as a subgraph that is shared among other entity types (such
as agents, claims, meta-relations, etc.) for the purposes of a common, reusable reference.
Rather than constituting a universal, top-down ontology, the concept subgraph is in practise
composed of any number of open or idiolectic ontologies defined by the user.24 Codex already
contains a number of idiolectic ontologies, such as ontologies for types of events, places,
relationships, professions, etc. For example, claim entities reference the ›Events‹ subset of the
concept subgraph. The concept ›Event‹ is the root node of the Events ontology and contains all
types (and subtypes) of events that occur in the project domain.25 Note that concepts can have
more than one parent, if desired, as a graph is not bound by the limitations of a tree. Changing
the structure of the ontology (e.g., moving a child concept to a different parent) is easily done
through the Codex interface, meaning that ontological structures can be kept fluid to suit the
evolving understanding of the project domain.

A concept annotation, therefore, is an annotation that refers to a concept entity in the
common ontology. In Figure 7, the green underlines represent concept annotations on the
words ›flautist‹ and ›prodigy‹.

Fig. 7: Concept annotations (green) from Alan Walker’s biography of Franz Liszt in the Codex interface, Walker

1983. [Neill / Kuczera 2019]

24 It is planned to extend the system with a feature to import ontologies – such as OWL ontologies – into the
concept subgraph to save the user the labour of entering them manually.
25 A project in Codex is a collection of texts that belong together. As a practical example, the Diary of Luca
Landucci (del Badia 1883) and the collected letters of Michelangelo (Carden 1913) are two projects in Codex.
The project domain is the set of all texts and their associated entities (e.g., agents, claims, concepts, etc.) in
the project. Because more than one project can share the same graph database, associated entities across
project domains may overlap. For example, the ›Landucci Diary‹ and ›Michelangelo letters‹ projects have
some agents in common, such as Lorenzo de’ Medici and his family, various 15th century popes, Italian cities,
etc. If overlap is not desired, associated entities can be segregated – but in our experience project domain
overlap is one of the most exciting features of Codex as it can lead to the discovery of obscure connections
between domains. Of course, the easiest way to segregate project domains is simply to reserve one Neo4j
database instance per project.

The Codex – an Atlas of Relations | ZfdG 2019

2.2.6 Data Sets and Data Points

A data point in Codex is defined as a quantity with a unit of measurement that is
attributable to a place and a time. A data set is a collection of data points. In the example
below, the statement that »three people fell dead on this day« translates to a data-point where
the value is »3«, the unit of measure is »people«, the place is »Florence«, and the time is »April
23rd, 1483« (the date of Landucci’s diary entry).26

Fig. 8: The data point annotation (dark purple underline) indicates a statement that can be represented as an

independent numerical quantity in the Codex interface. [Neill / Kuczera 2019]

The idea of a data point is to enable the editor to extract numerical data from a text that
may be of statistical interest.27 As indicated in the above Figure 8, a data point annotation links
the text to a data point entity.

Some practical examples of data sets that can be extracted from historical sources include
epidemiological data, weather records, census figures, crime statistics, etc.

2.2.7 Times

A time entity in Codex is a representation of a date and time in various degrees of
precision. The entity is composed of nine components, which are all optional. Options for
c. include ›on‹, ›before‹, ›after‹, and ›circa‹; options for Section include ›early‹ and ›late‹; and

options for Season include ›Winter‹, ›Summer‹, ›Autumn‹, ›Spring‹. The variety of options is
meant to reflect the realities of date representation in historical texts. (We intend to review the
W3C Time Ontology for guidance on refining this model.)

Fig. 9: The data entry modal window for a time entity in the Codex interface. [Neill / Kuczera 2019]

26 del Badia 1883, p. 37.
27 Data points can also store text values as well as numbers, so they can be used to represent state values. An
example would be states of weather, such as rain, snow, floods, etc.

https://www.w3.org/TR/owl-time/

The Codex – an Atlas of Relations | ZfdG 2019

A time annotation is applied to any part of the text with an identifiable date / time, even if
the text does not state a numerical date. For example, in Figure 8 above the time annotation
(blue underline) links the text »this day« to the stated date of the diary entry (April 23rd, 1483).

Now that an overview of the main annotation types in Codex has been given, it is necessary
to examine the standoff properties model as it forms the basis of Codex’s approach to text-as-
graph.

3. Standoff Properties

Aside from markup formats, word chains present another approach to annotation. A word
chain is a graph model of a text where each word is treated as a token node and structure is
indicated by relating each node to its next sibling in the sentence. Lexical and presentational
annotations can also be linked to token nodes to model the structure of paragraphs and larger
units.

Fig. 10: Text as a chain of word nodes in the Neo4j browser. [Neill / Kuczera 2019]

Like standoff properties, word chains represent a markup-free alternative to XML
document formats, and offer a solution to the overlapping annotations problem. However, at
present updates to word chains are managed through graph database queries, which requires
some programming expertise. The Codex standoff property editor offers a trade-off between
the multidimensional affordances of the graph and the technical simplicity, endurance, and
sustainability of the text stream. Another distinction between word chains and standoff
properties is that word chains take the word as the smallest token, which poses challenges for
annotations inside of words (let alone how one chooses to define word boundaries).

The simplest solution from an annotation standpoint is conceivably to treat the character

and not the word as the smallest token unit; however, managing a chain of character nodes
as a graph data-structure would be exponentially more unwieldy than a chain of word nodes.
However, this assumes that the characters themselves need to be represented as nodes; in
fact, what defines an annotation is that it is a region of text with a certain intention (whether
stylistic, presentational, semantic, etc.). If one moves away from the token node concept to an
annotation node concept, then the text of the document can be stored in a plain text format
(sans markup) and annotations can annotate the text by using start and end character indexes.

The removal of embedded markup makes the text stream easily readable to both humans
and machines. It also solves the overlapping annotation problem because the properties
are stored apart from the text, and not subject to hierarchical encoding conflicts. Multiple
properties can refer to the same regions of text – or overlapping regions – by virtue of the
start and end character indexes. Standoff properties are inherently discrete objects which

The Codex – an Atlas of Relations | ZfdG 2019

coexist in a ›flat‹ hierarchy, that is to say, with no imposed hierarchy at all. If a standoff property
references a linked entity in the database, it can be easily connected via an edge, allowing full
traceability from entities to the regions of text they are referenced by.

A standoff property, then, is essentially a data structure (tuple) that models the following
attributes:

1. Type. A string representing the name (i.e., the type) of the annotation.
2. StartIndex. An integer representing the index position of the first character of the
annotation: 0 <= x < n, where x is the index and n is the length of the text.
3. EndIndex. An integer representing the index position of the last character of the
annotation within the length (same rule as the StartIndex).

In practise one would wish to extend this with a fourth attribute:

4. Value. A string representing data specific to the annotation, such as the unique
identifier of a referenced entity, or alternatively a colour value, text size, font, etc.

At this point, one might object that standoff properties are not practical in the context
of a text editor due to the likelihood of ›breaking‹ standoff property indexes upon text
changes: deleting or adding a single character would necessitate the real-time recalculation of
potentially every standoff property index in memory. Although this may not even be an issue
in practise with texts of a certain size and number of standoff properties (given the efficiency
of JavaScript interpreters in modern browsers), the Codex standoff property editor takes an
approach that effectively sidesteps this issue. Text in the Codex editor is represented as a
NodeList of HTML SPAN elements connected via reference pointers to an array of standoff
property JavaScript objects.28 Because a linked list is used to represent the text,29 and because
the standoff properties are linked to the text with pointers rather than indexes, characters can
be freely added to or removed from the text without the need to recalculate indexes while
editing.30 Only when the user is ready to export the data from the editor (e.g., for saving) are
the dynamic node pointers converted to static index numbers. As this step happens after all
changes have been made to the text in the editing session, there is no danger of the indexes
being out of alignment. The plain text and properties are exported as a JSON object which
can be saved to a text file or converted to a data storage format of the user’s choice. Codex
translates the JSON export into a standoff property graph, linked to entity nodes as directed by
the annotation type. These standoff property nodes can be converted to various formats such
as text as a chain of word nodes.31

28The JavaScript NodeList data type combines a linked list with a tree structure, in that each element is
connected to its previous and next siblings, and also connected to its children and parent nodes.
29Incidentally, this is basically the same principle as using a chain of character-token nodes to model a text in
a graph database, except that it is done in memory in JavaScript in a web application.
30Deletions are a special case where the deleted text selection traverses the start or the end of a standoff
property text range. In this case, affected properties are updated to ensure that the start and end pointers
refer to the correct (remaining) characters.
31Because standoff properties are equivalent to character nodes in resolution, there is no difficulty in
converting them to word nodes, which are lower in resolution.

The Codex – an Atlas of Relations | ZfdG 2019

Building on our technical definition of a standoff property, Codex extends this model
further to include attributes that aid with database integration.

5. GUID. A 32-character string functioning as a unique identifier of the standoff property.
This is required for saving the property to the database.
6. UserGUID. A GUID (see above) representing the user who created the annotation.
7. Index. An optional integer representing the order in which the standoff property was
created.
8. Text. An optional string representing the source text referred to by the annotation.
This is an optional attribute to make it easier to view standoff properties in the database.
The StartIndex and EndIndex attributes are the source of truth with respect to the
location of the annotation in the text.
9. Layer. An optional string representing arbitrary groups (layers) that the annotation
is assigned to. For example, if the user wanted to group several agent annotations
referencing artists, they could assign the annotations to an ›artist‹ layer. This grouping
could be used for filtering either in the database, or in the editor itself.
10. IsZeroPoint: A boolean value indicating whether the standoff property is a zero-point
annotation; that is, an annotation that refers to an invisible index point in the text. This
can be thought of as an annotation that refers to the space between two characters.
11. IsDeleted: A boolean value indicating whether the standoff property has been marked
as deleted.

To give a real-world example, below are images of a text in the Codex editor as well as a
representation of a portion of it in as a JSON export.

Fig. 11: Luca Landucci’s diary entry for April 8th, 1492 on the death of Lorenzo de’ Medici in the Codex

interface, del Badia 1883, p. 53–54. [Neill / Kuczera 2019]

Following is an extract from the JSON export of the above text, with yellow highlights
showing the typical parts of the standoff property data structure. The green parts show which
text the annotation covers. The blue part shows the text itself.

{

The Codex – an Atlas of Relations | ZfdG 2019

"text": "Lorenzo de' Medici died on his estate at Careggi; and it was said that when he heard
the news of the effects of the thunderbolt, being so ill, he asked where it had fallen, and on
which side; ... ",

"properties": [{

"index": 23,

"guid": "cde24f38-81cb-4110-b368-b5b1f4ed4d53",

"type": "agent",

"layer": null,

"text": "Lorenzo de' Medici",

"value": "e45fed44-17a0-4c2c-9c00-858667a17904",

"startIndex": 0,

"endIndex": 17,

"isZeroPoint": false,

"isDeleted": false,

"userGuid": "fb067f75-a121-47c1-8767-99271c75cfc0"

}, {

"index": 25,

"guid": "5e33d2a8-dea0-4bbf-b4f6-8ccf40dac4d9",

"type": "agent",

"layer": null,

"text": "Careggi",

"value": "d8eda97c-79d7-43ad-b43f-fd3e3a05c68e",

klaffki
Hervorheben

klaffki
Hervorheben

klaffki
Hervorheben

klaffki
Hervorheben

klaffki
Hervorheben

klaffki
Hervorheben

klaffki
Hervorheben

klaffki
Hervorheben

The Codex – an Atlas of Relations | ZfdG 2019

"startIndex": 41,

"endIndex": 47,

"isZeroPoint": false,

"isDeleted": false,

"userGuid": "fb067f75-a121-47c1-8767-99271c75cfc0"

}, {

"index": 46,

"guid": "94eebe67-0136-4f54-a4c6-6e7072dfb3de",

"type": "claim",

"layer": null,

"text": "Lorenzo de' Medici died on his estate at Careggi",

"value": "175742e2-a342-455d-a1b9-3fe3a96e3fd9",

"startIndex": 0,

"endIndex": 47,

"isZeroPoint": false,

"isDeleted": false,

"userGuid": "fb067f75-a121-47c1-8767-99271c75cfc0"

}]

}

klaffki
Hervorheben

klaffki
Hervorheben

klaffki
Hervorheben

klaffki
Hervorheben

klaffki
Hervorheben

klaffki
Hervorheben

The Codex – an Atlas of Relations | ZfdG 2019

4. The Modelling of Doubt

Before proceeding to reflect on the possibilities of deep integration between text and data,
it is important to review how the above discussion bears on the subject of the January 2018
graph-conference, »The modelling of doubts«,32 hosted by the Akademie der Wissenschaften
und der Literatur, Mainz. Although Codex wasn’t designed with the intention of modelling
doubt in the strict sense of quantifying it, it can be said that it aims at modelling interpretation in
the following ways:

1. The ability to freely overlap annotations means that the same text regions can be
annotated multiple times, allowing multiple interpretations to be captured. For instance,
if two editors disagree about the identity of a person in the text, they could each add
their own agent annotation to the same text region as overlaps are permitted;
2. Comments can be added to annotations themselves, enabling editorial discussions
about the annotation validity to be recorded;
3. The ability to annotate agent properties, event claims, and meta-relations leads to full

5. Implications

The full potential of the standoff property model on the integration between text and graph
data structures has yet to be documented. Aside from the convenience of plain text free of
markup, of overlapping annotations, and of annotations whose sources are traceable back to
precise text ranges, there are two features of standoff properties that suggest possibilities for
computational analysis:

1. Standoff properties can be grouped into layers, where a layer is defined either implicitly
by the annotation type or explicitly by a value stored in the Layer attribute;33

2. The StartIndex and EndIndex attributes offer the possibility of combining annotations

that are contained by or overlap the same text range.

32 »Die Modellierung des Zweifels« – Schlüsselideen und -konzepte zur graphbasierten Modellierung von
Unsicherheiten am 19. und 20. Januar 2018 in der Akademie der Wissenschaften und der Literatur, Mainz.
33Incidentally, these layers could be exported into the standoff property JSON format, or a module could
be written to export them into an XML format of choice. It should also be technically possible to convert a
Codex standoff property document into an XML format such as TEI-XML, but this has not been actively
developed yet.

transparency around statements that are often just presented as established fact. For
example, rather than simply accepting as fact the claim that Lorenzo de’ Medici died at
Careggi on April 8th, 1492, the claim annotation in Codex is traceable back to the precise
section of the Luca Landucci text it occurs in.

http://www.adwmainz.de

The Codex – an Atlas of Relations | ZfdG 2019

These qualities of layering and combination have already led to useful features in the
Codex editor (such as modal windows for managing named-entity and pronoun annotation
candidates), but they offer computational insights as well. It is trivial, for example, to write a
Cypher query to find all annotations in a text (or in all texts) that overlap each other in various
ways. Overlapping annotations have the potential to enrich the text they annotate with their
combined meanings. One approach that we are exploring in Codex is the comparison of
manually-entered annotations (such as agents and event claims) with machine-generated
syntaxical annotations, providing a natural language analysis of texts. This is an example of
how standoff properties can support a multidimensional analysis of the text, allowing human-
generated and machine-generated annotations to exist together.

6. Conclusion

The Codex uses standoff properties to integrate annotations with text in a graph database.
Annotations map back to text at the character level and can be overlapped without constraint.
The ability to overlap and comment annotations offers a convenient system for capturing
discussions around doubt. The variety of semantic annotations – including event claims, meta-
relations, agent properties, etc. – leads to a system where ›factual data‹ can be easily traced
back to its text sources. Beyond the modelling of interpretations, Codex seeks to enable project
editors to build an ›atlas of relations‹ from their source texts, integrating graph entities with
text on a character level. The intended result is not so much a marked-up document (although
this is a given) but a graph dataset with ›deep roots‹ in its constituent source texts, mediated
through layers of standoff property annotations. Codex’s real-time standoff property editor
and modal-window entity management system are tools that we hope will assist editors in
exploring the connections between structured data and text in their own digital editions.

The Codex – an Atlas of Relations | ZfdG 2019

Bibliographic References
Luca Landucci: Diario fiorentino dal 1450 al 1516. Continuato da un anonimo fino al 1542. Pubblicato sui codici della Comunale
di Siena e della Marucelliana. Publ. by Iodoco del Badia. Florenz 1883. [Nachweis im GBV]

Luca Landucci: A Florentine Diary from 1450 to 1516. Publ. by Iodoco del Badia. Transl. by Alice de Rosen Jervis. New York 1927.

Michelangelo Buonarroti: Michelangelo: A Record of His Life as Told in His Own Letters and Papers. Publ. by Robert Walter
Carden. London 1913.

Desmond Allan Schmidt (2016a): Using standoff properties for marking-up historical documents in the humanities. In: it –
Information Technology 58 (2016), H. 2, S. 63–69. DOI: 10.1515/itit-2015-0030

Desmond Allan Schmidt (2016b): Standoff properties as an alternative to XML for digital historical editions. 2016. PDF. [online]

Alan Walker: Franz Liszt. 3 Vol. New York 1983. Vol. 1: The virtuoso years: 1811–1847. [Nachweis im GBV]

List of Figures with Captions
Fig. 1: Stylistic, layout, and semantic annotation buttons in the Codex editor. [Neill / Kuczera 2019.]

Fig. 2: A record of Lorenzo de’ Medici’s gender as a property record. If desired, this can even be linked back to a statement
in the text via a property annotation. [Neill / Kuczera 2019.]

Fig. 3: Screenshot from ›Codex‹ of a list of Lorenzo de’ Medici’s relationships in the system. [Neill / Kuczera 2019.]

Fig. 4: The event claim by Luca Landucci about Lorenzo de’ Medici’s death in the Codex interface. [Neill / Kuczera 2019.]

Fig. 5: A representation of the above event claim as nodes and edges in the Neo4j browser. The blue node is a (:Claim); the

red nodes are (:Agent)s; the green node is a (:Concept); and the yellow node is the (:Time). [Neill / Kuczera 2019.]

Fig. 6: An example of a meta-relation annotation (orange underline) in the Codex interface. [Neill / Kuczera 2019]

Fig. 7: Concept annotations (green) from Alan Walker’s biography of Franz Liszt in the Codex interface. [Neill / Kuczera 2019.]

Fig. 8: The data point annotation (dark purple underline) indicates a statement that can be represented as an
independent numerical quantity in the Codex interface, Walker 1983. [Neill / Kuczera 2019.]

Fig. 9: The data entry modal window for a time entity in the Codex interface. [Neill / Kuczera 2019.]

Fig. 10: Text as a chain of word nodes in the Neo4j browser. [Neill / Kuczera 2019.]

Fig. 11: Luca Landucci’s diary entry for April 8th, 1492 on the death of Lorenzo de’ Medici in the Codex interface, del

Badia 1883, p. 53–54. [Neill / Kuczera 2019.]

http://gso.gbv.de/DB=2.1/PPN?PPN=139149791
https://doi.org/10.1515/itit-2015-0030
https://pdfs.semanticscholar.org/6056/afc3c25fcf0e9b3e677c04ea4bc34b8151ab.pdf
http://gso.gbv.de/DB=2.1/PPN?PPN=117688495

	1. Introduction
	2. Annotations
	2.1 Presentation
	2.1.1 Page, line, paragraph, sentence, column, etc.
	2.1.2 Hyphens as a zero point annotation
	2.2 Semantic
	2.2.1 Agents
	2.2.2 Claims
	2.2.3 Texts
	2.2.4 Meta-Relations
	2.2.5 Concepts
	2.2.6 Data Sets and Data Points
	2.2.7 Times
	3. Standoff Properties
	4. The Modelling of Doubt
	5. Implications
	6. Conclusion
	Bibliographic References
	List of Figures with Captions

